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Abstract

During the past 15 years, the methylotrophic yeast Pichia pastoris has developed into a highly successful system for the production of a
variety of heterologous proteins. The increasing popularity of this particular expression system can be attributed to several factors, most
importantly: (1) the simplicity of techniques needed for the molecular genetic manipulation of P. pastoris and their similarity to those of
Saccharomyces cerevisiae, one of the most well-characterized experimental systems in modern biology; (2) the ability of P. pastoris to
produce foreign proteins at high levels, either intracellularly or extracellularly; (3) the capability of performing many eukaryotic post-
translational modifications, such as glycosylation, disulfide bond formation and proteolytic processing; and (4) the availability of the
expression system as a commercially available kit. In this paper, we review the P. pastoris expression system: how it was developed, how it
works, and what proteins have been produced. We also describe new promoters and auxotrophic marker/host strain combinations which
extend the usefulness of the system. © 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction
1.1. Pichia pastoris as an experimental organism

Thirty years ago, Koichi Ogata first described the ability
of certain yeast species to utilize methanol as a sole source
of carbon and energy [1]. The methylotrophs attracted
immediate attention as potential sources of single-cell pro-
tein (SCP) to be marketed primarily as high-protein ani-
mal feed. During the 1970s, Phillips Petroleum Company
developed media and protocols for growing Pichia pastoris
on methanol in continuous culture at high cell densities
(>130 g 17! dry cell weight, Fig. 1) [2]. Unfortunately, the
oil crisis of the 1970s caused a dramatic increase in the
cost of methane. Concomitantly, the price of soybeans, the
major alternative source of animal feed, fell. As a result,
the economics of SCP production from methanol were
never favorable.

In the following decade, Phillips Petroleum contracted
with the Salk Institute Biotechnology/Industrial Associ-
ates, Inc. (SIBIA, La Jolla, CA) to develop P. pastoris
as an organism for heterologous protein expression. Re-
searchers at SIBIA isolated the gene and promoter for
alcohol oxidase, and generated vectors, strains, and corre-
sponding protocols for the molecular genetic manipulation
of P. pastoris. The combination of the fermentation meth-

Fig. 1. High cell density culture of P. pastoris. The centrifuge bottle on
the left shows a P. pastoris culture grown in a flask to a density of
1 ODgpo unit. The bottle on the right contains a sample of the strain
grown in a fermenter to a density of 130 g 1=! dry cell weight (~ 500
ODggp units).

ods developed for the SCP process and the alcohol oxidase
promoter’s strong, regulated expression effected surpris-
ingly high levels of foreign protein expression. In 1993,
Phillips Petroleum sold its P. pastoris expression system
patent position to Research Corporation Technologies
(Tucson, AZ), the current patent holder. In addition, Phil-
lips Petroleum licensed Invitrogen Corporation (Carlsbad,
CA) to sell components of the system, an arrangement
that continues under Research Corporation Technologies.

1.2. Methanol metabolism

The conceptual basis for the P. pastoris expression sys-
tem stems from the observation that some of the enzymes
required for methanol metabolism are present at substan-
tial levels only when cells are grown on methanol [3,4].
Biochemical studies showed that methanol utilization re-
quires a novel metabolic pathway involving several unique
enzymes [3]. The enzyme alcohol oxidase (AOX) catalyzes
the first step in the methanol utilization pathway, the ox-
idation of methanol to formaldehyde and hydrogen per-
oxide (Fig. 2). AOX is sequestered within the peroxisome
along with catalase, which degrades hydrogen peroxide to
oxygen and water. A portion of the formaldehyde gener-
ated by AOX leaves the peroxisome and is further oxi-
dized to formate and carbon dioxide by two cytoplasmic
dehydrogenases, reactions that are a source of energy for
cells growing on methanol.

The remaining formaldehyde is assimilated to form cel-
lular constituents by a cyclic pathway that starts with the
condensation of formaldehyde with xylulose 5-monophos-
phate, a reaction catalyzed by a third peroxisomal enzyme
dihydroxyacetone synthase (DHAS). The products of this
reaction, glyceraldehyde 3-phosphate and dihydroxyace-
tone, leave the peroxisome and enter a cytoplasmic path-
way that regenerates xylulose 5-monophosphate and, for
every three cycles, one net molecule of glyceraldehyde 3-
phosphate. Two of the methanol pathway enzymes, AOX
and DHAS, are present at high levels in cells grown on
methanol but are not detectable in cells grown on most
other carbon sources (e.g., glucose, glycerol, or ethanol).
In cells fed methanol at growth-limiting rates in fermenter
cultures, AOX levels are dramatically induced, constitut-
ing >30% of total soluble protein [5,6].

1.3. AOXI promoter
There are two genes that encode alcohol oxidase in P.

pastoris: AOXI and AOX2; AOXI is responsible for a
vast majority of alcohol oxidase activity in the cell [7-9].
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Fig. 2. The methanol pathway in P. pastoris. 1, alcohol oxidase; 2, cata-
lase; 3, formaldehyde dehydrogenase; 4, formate dehydrogenase, 5, di-
hydroxyacetone synthase; 6, dihydroxyacetone kinase; 7, fructose 1,6-bi-
phosphate aldolase; 8, fructose 1,6-bisphosphatase.

Expression of the AOXI gene is controlled at the level of
transcription [7-9]. In methanol-grown cells, ~5% of
poly(A)t RNA is from A0XI; however, in cells grown
on most other carbon sources, 40OXI message is undetect-
able [10]. The regulation of the AOXI gene appears to
involve two mechanisms: a repression/derepression mech-
anism plus an induction mechanism, similar to the regu-
lation of the Saccharomyces cerevisiae GALI gene. Unlike
GALI regulation, the absence of a repressing carbon
source, such as glucose in the medium, does not result in
substantial transcription of 4OXI. The presence of meth-
anol is essential to induce high levels of transcription [7].

1.4. Molecular genetic manipulation

Techniques required for the molecular genetic manipu-
lation of P. pastoris, such as DNA-mediated transforma-
tion, gene targeting, gene replacement, and cloning by
functional complementation, are similar to those described
for S. cerevisiae. P. pastoris can be transformed by electro-
poration, a spheroplast generation method, or whole cell
methods such as those involving lithium chloride and
polyethylene glycoljgoo [11-14]. As in S. cerevisiae, P. pas-
toris exhibits a propensity for homologous recombination
between genomic and artificially introduced DNAs. Cleav-
age of a P. pastoris vector within a sequence shared by the
host genome stimulates homologous recombination events
that efficiently target integration of the vector to that ge-
nomic locus [15]. Gene replacements occur at lower fre-
quencies than those observed in S. cerevisiae and appear
to require longer terminal flanking sequences to efficiently
direct integration [14].

P. pastoris is a homothallic ascomycetous yeast that can
also be manipulated by classical genetic methods [10,16].
Unlike homothallic strains of S. cerevisiae, which are dip-
loid, P. pastoris remains haploid unless forced to mate.
Strains with complementary markers can be mated by
subjecting them to a nitrogen-limited medium. After
1 day on this medium, cells are shifted to a standard

minimal medium supplemented with nutrients designed
to select for complementing diploid cells (not self-mated
or non-mated parental cells). The resulting diploids are
stable as long as they are not subjected to nutritional
stress. To obtain spore products, diploids are returned to
the nitrogen-limited medium, which stimulates them to
proceed through meiosis and sporulation. Spore products
are handled by random spore techniques rather than
micromanipulation, since P. pastoris asci are small and
difficult to dissect. Yet most standard classical genetic ma-
nipulations, including mutant isolation, complementation
analysis, backcrossing, strain construction, and spore
analysis, can be accomplished.

2. Construction of expression strains

Expression of any foreign gene in P. pastoris requires
three basic steps: (1) the insertion of the gene into an
expression vector; (2) introduction of the expression vec-
tor into the P. pastoris genome; and (3) examination of
potential expression strains for the foreign gene product.
A variety of P. pastoris expression vectors and host strains
are available. A generalized diagram of an expression vec-
tor and a list of possible vector components are shown in
Fig. 3 and Table 1, respectively. More detailed informa-
tion on vectors and strains can be found elsewhere [17,18].
In addition, the DNA sequence of many vectors can be
found at the Invitrogen website (Www.invitrogen.com).
Table 2 shows a list of commonly used P. pastoris host
strains.

E. coli
marker

P. pastoris
marker

EXPRESSION
VECTOR

3'AO0X1

PROMOTER
YFG

Fig. 3. General diagram of a P. pastoris expression vector. YFG, “Your
Favorite Gene;’ *, sites for cassette amplification.
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Table 1
Relevant components of vectors used for protein expression in P. past-
oris

Secretion signals
Marker genes
Promoters

none, PHO1, o-MF, SUC2, PHA-E
ADEI, ARG4, G418, HIS4, URA3, Zeo"
AOXI1, GAP, FLDI, PEX8, YPTI

See text for explanation of different elements.

2.1. Expression vectors

All expression vectors have been designed as Escherichia
colil P. pastoris shuttle vectors, containing an origin of rep-
lication for plasmid maintenance in E. coli and markers
functional in one or both organisms. Most expression vec-
tors have an expression cassette composed of a 0.9-kb
fragment from AOXI composed of the 5’ promoter se-
quences and a second short 40XI-derived fragment with
sequences required for transcription termination [19]. Be-
tween the promoter and terminator sequences is a site or
multiple cloning site (MCS) for insertion of the foreign
coding sequence. In the native 40X gene, the alcohol
oxidase open reading frame (ORF) is preceded by an un-
usually long 5" untranslated region (116 nt) [8]. Generally,
the best expression results are obtained when the first
ATG of the heterologous coding sequence is inserted as
close as possible to the position of the 40X1 ATG. This
position coincides with the first restriction site in most
MCSs. In addition, for secretion of foreign proteins, vec-
tors are available where in-frame fusions of foreign pro-
teins and the secretion signals of P. pastoris acid phospha-
tase (PHOI) or S. cerevisiae o-mating factor (o-MF) can
be generated.

2.2. Alternative promoters

Although the A40XI promoter has been successfully
used to express numerous foreign genes, there are circum-
stances in which this promoter may not be suitable. For
example, the use of methanol to induce gene expression
may not be appropriate for the production of food prod-
ucts since methane, a petroleum-related compound, is one
source of methanol. Also, methanol is a potential fire haz-
ard, especially in quantities needed for large-scale fermen-
tations. Therefore, promoters that are not induced by
methanol are attractive for expression of certain genes.
Alternative promoters to the AOXI promoter are the
P. pastoris GAP, FLDI1, PEXS, and YPTI promoters.

2.2.1. Pgqp

Both northern and reporter activation results indicate
that the P. pastoris glyceraldehyde 3-phosphate dehydro-
genase (GAP) gene promoter provides strong constitutive
expression on glucose at a level comparable to that seen
with the AOXI promoter [20]. GAP promoter activity lev-
els in glycerol- and methanol-grown cells are approxi-

mately two-thirds and one-third of the level observed for
glucose, respectively. The advantage of using the GAP
promoter is that methanol is not required for induction,
nor is it necessary to shift cultures from one carbon source
to another, making strain growth more straightforward.
However, since the GAP promoter is constitutively ex-
pressed, it is not a good choice for the production of
proteins that are toxic to the yeast.

2.2.2. PFLD]

The FLDI gene encodes a glutathione-dependent form-
aldehyde dehydrogenase, a key enzyme required for the
metabolism of certain methylated amines as nitrogen sour-
ces and methanol as a carbon source [21]. The FLDI pro-
moter can be induced with either methanol as a sole car-
bon source (and ammonium sulfate as a nitrogen source)
or methylamine as a sole nitrogen source (and glucose as a
carbon source). After induction with either methanol or
methylamine, Pprp; is able to express levels of a B-lacta-
mase reporter gene similar to those obtained with metha-
nol induction from the 40XI promoter. The FLDI pro-
moter offers the flexibility to induce high levels of
expression using either methanol or methylamine, an inex-
pensive nontoxic nitrogen source.

2.2.3. Ppexs, Pypri

For some applications, the 40XI, GAP, and FLDI
promoters may be too strong, expressing genes at too
high a level. There is evidence that, for certain foreign
genes, the high level of expression from P,py; may over-
whelm the post-translational machinery of the cell, causing
a significant proportion of foreign protein to be misfolded,
unprocessed, or mislocalized [22,23]. For these and other
applications, moderately expressing promoters are desir-
able. Toward this end, the P. pastoris PEXS and YPTI
promoters may be of use. The PEXS gene encodes a per-
oxisomal matrix protein that is essential for peroxisome
biogenesis [24]. It is expressed at a low but significant level
on glucose and is induced modestly when cells are shifted
to methanol. The YPTI gene encodes a GTPase involved
in secretion, and its promoter provides a low but constit-
utive level of expression in media containing either glu-
cose, methanol, or mannitol as carbon sources [25].

2.3. Selectable markers

Although classical and molecular genetic techniques are
generally well-developed for P. pastoris, few selectable
marker genes have been described for the molecular genet-
ic manipulation of the yeast. Existing markers are limited
to the biosynthetic pathway genes HIS4 from either
P. pastoris or S. cerevisiae, ARG4 from S. cerevisiae, and
the Sh ble gene from Streptoalloteichus hindustanus which
confers resistance to the bleomycin-related drug zeocin
[11,26,27]. The stable expression of human type III colla-
gen illustrates the need for multiple selectable markers in
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Table 2

P. pastoris host strains

Strain Genotype Reference
Auxotrophic strains

Y-11430 wild-type NRRL?
GS115 his4 [11]
GS190 arg4 [16]
JC220 adel [16]
JC254 ura3 [16]
GS200 arg4 his4 [11]
JC227 adel arg4 [29]
JC304 adel his4 [29]
JC305 adel ura3 [29]
JC306 arg4 ura3 [29]
JC307 his4 ura3 [29]
JC300 adel arg4 his4 [29]
JC301 adel his4 ura3 [29]
JC302 adel arg4 ura3 [29]
JC303 arg4 his4 ura3 [29]
JC308 adel arg4 his4 ura3 [29]
Protease-deficient strains

KM71 Aaoxl::SARG4 his4 arg4 [7]
MC100-3 Aaoxl::SARG4Aaox2: : Phis4 his4 arg4 9
SMDI1168 Apep4::URA3 his4 ura3 [38]
SMD1165 prbl his4 [38]
SMD1163 pep4 prbl his4 [38]
SMDI1168 kex1::SUC2 Apep4::URA3 Akexl::SUC2 his4 ura3 [34]

4Northern Regional Research Laboratories, Peoria, IL.

P. pastoris [28]. The production of collagen requires the
coexpression of prolyl 4-hydroxylase, a central enzyme in
the synthesis and assembly of trimeric collagen. Since prol-
yl 4-hydroxylase is an o, tetramer, the B subunit of
which is protein disulfide isomerase (PDI), three markers
— Arg, His, and zeocin resistance — were necessary to co-
express all three polypeptides in the same P. pastoris
strain.

Recently, a new set of biosynthetic markers has been
isolated and characterized: the P. pastoris ADEI (PR-ami-
doimidazolesuccinocarboxamide synthase), A RG4 (argini-
nosuccinate lyase), and URA3 (orotidine 5’-phosphate de-
carboxylase) genes [29]. Each of these selectable markers
has been incorporated into expression vectors. In addition,
a series of host strains containing all possible combina-
tions of adel, arg4, his4, and ura3 auxotrophies has been
generated (Table 2).

2.4. Host strains

All P. pastoris expression strains are derived from
NRRL-Y 11430 (Northern Regional Research Laborato-
ries, Peoria, IL). Most have one or more auxotrophic mu-
tations which allow for selection of expression vectors
containing the appropriate selectable marker gene upon
transformation. Prior to transformation, all of these
strains grow on complex media but require supplementa-
tion with the appropriate nutrient(s) for growth on mini-
mal media.

2.4.1. Methanol utilization phenotype

Most P. pastoris host strains grow on methanol at the
wild-type rate (Mut™, methanol utilization plus pheno-
type). However, two other types of host strains are avail-
able which vary with regard to their ability to utilize meth-
anol because of deletions in one or both 40X genes.
Strains with 40X mutations are sometimes better pro-
ducers of foreign proteins than wild-type strains [30-32].
Additionally, these strains do not require the large
amounts of methanol routinely used for large-scale fer-
mentations of Mut™ strains. KM71 (his4 arg4 aoxIA.::
SARG4) is a strain where 40X1 has been partially deleted
and replaced with the S. cerevisiae ARG4 gene [15]. Since
the strain must rely on the weaker 4A0X2 for methanol
metabolism, it grows slowly on this carbon source
(Mut®, methanol utilization slow phenotype). Another
strain, MCI100-3 (his4 arg4 aoxIA::SARG4 aox2A::
Phis4), is deleted for both AOX genes and is totally unable
to grow on methanol (Mut™, methanol utilization minus
phenotype) [9]. All of these strains, even the Mut™ strain,
retain the ability to induce expression at high levels from
the AOXI promoter [32].

2.4.2. Protease-deficient host strains

Several protease-deficient strains — SMD1163 (his4 pep4
prbl), SMDI1165 (his4 prbl), and SMD1168 (his4 pep4) —
have been shown to be effective in reducing degradation of
some foreign proteins [23,33]. This is especially noticeable
in fermenter cultures, because the combination of high cell
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density and lysis of a small percentage of cells results in a
relatively high concentration of these vacuolar proteases.
An additional protease-deficient strain SMDI1168 Ape-
p4::URA3 Akexl::SUC2 his4 ura3 was recently devel-
oped to inhibit proteolysis of murine and human endo-
statin. Kex! protease can cleave carboxy-terminal lysines
and arginines. Therefore, the deletion strain was generated
to inhibit carboxy-terminal proteolysis. After 40 h of fer-
mentation, purification of intact endostatin was achieved
[34].

Unfortunately, these protease-deficient cells are not as
vigorous as wild-type strains with respect to PEP4. In
addition to lower viability, they possess a slower growth
rate and are more difficult to transform. Therefore, the use
of protease-deficient strains is only recommended in situa-
tions where other measures to reduce proteolysis have
yielded unsatisfactory results.

2.5. Integration of expression vectors into the P. pastoris
genome

Expression vectors are integrated into the P. pastoris
genome to maximize the stability of expression strains.
This can be done in two ways. The simplest way is to
restrict the vector at a unique site in either the marker
gene (e.g., HIS4) or the AOXI promoter fragment and
then to transform it into the appropriate auxotrophic mu-
tant. The free DNA termini stimulate homologous recom-
bination events that result in single crossover-type integra-
tion events into these loci at high frequencies (50-80% of
His™ transformants). The remaining transformants have
undergone gene conversion events in which only the
marker gene from the vector has integrated into the mu-
tant host locus without other vector sequences.

Alternatively, certain P. pastoris expression vectors can
be digested in such a way that the expression cassette and
marker gene are released, flanked by 5’ and 3’ AO0XI
sequences. Approximately 10-20% of transformation
events are the result of a gene replacement event in which
the AOXI gene is deleted and replaced by the expression
cassette and marker gene. This disruption of the 40X]
gene forces these strains to rely on the transcriptionally
weaker 40X2 gene for growth on methanol [31], and, as
a result, these strains have a Mut® phenotype. These gene
replacement strains are easily identified among trans-
formed colonies by replica-plating them to methanol and
selecting those with reduced ability to grow on methanol.
As mentioned previously, the potential advantage of Mut®
strains is that they utilize less methanol and sometimes
express higher levels of foreign protein than wild-type
(Mut™) strains, especially in shake-flask cultures [15].

2.6. Generating multicopy strains

Optimization of protein expression often, but not al-
ways, includes the isolation of multicopy expression

strains. A strain that contains multiple integrated copies
of an expression cassette can sometimes yield more heter-
ologous protein than single-copy strains [22,35].

Three approaches lead reliably to multicopy expression
strains in P. pastoris. As shown in Fig. 4, the first ap-
proach involves constructing a vector with multiple
head-to-tail copies of an expression cassette [23]. The
key to generating this construction is a vector which has
an expression cassette flanked by restriction sites which
have complementary termini (e.g., BamHI-Bg/ll, Sall-
Xhol combinations). The process of repeated cleavage
and reinsertion results in the generation of a series of
vectors that contain increasing numbers of expression cas-
settes. A particular advantage to this approach, especially
in the production of human pharmaceuticals, is that the
precise number of expression cassettes is known and can
be recovered for direct verification by DNA sequencing.

A second method utilizes expression vectors that con-
tain the P. pastoris HIS4 and the bacterial Tn903kan
genes. The bacterial kanamycin resistance gene also con-
fers resistance to the related eukaryotic antibiotic G418
[36]. The level of G418 resistance can be roughly corre-
lated to vector copy number. P. pastoris must first be
transformed to His™ prototrophy; then multicopy trans-
formants are screened by replica-plating to plates contain-
ing G418. This method results in a subset of colonies
enriched for those containing multiple expression vector
copies. However, the vector copy number varies greatly;
thus, a significant number (50-100) of transformants must
be subjected to further analysis of copy number and ex-
pression level. By this approach, strains carrying up to 30
copies of an expression cassette have been isolated [35].

A third approach to constructing multicopy strains in-
volves the use of a vector with the bacterial Sh ble gene,
which confers resistance to the antibiotic zeocin [27]. Un-
like G418 selection, strains transformed with expression
cassettes containing the zeocin marker can be selected di-
rectly by resistance to the drug. Additionally, populations
of transformants can be enriched for multicopy expression
cassette strains simply by plating on increased concentra-
tions of zeocin in the selection plates. Also, because the Sh
ble gene can serve as a selectable marker in both bacteria
and yeast, these expression vectors are compact and con-
venient to use. However, as with the G418 selection, most
transformants resistant to high levels of zeocin do not
contain multiple vector copies, and numerous transform-
ants must be screened for ones that do.

2.7. High cell density growth in fermenter cultures

P. pastoris is a poor fermenter, a major advantage rel-
ative to S. cerevisiae. In high cell density cultures, ethanol
(the product of S. cerevisiae fermentation) rapidly builds
to toxic levels which limit further growth and foreign
protein production. With its preference for respiratory
growth, P. pastoris can be cultured at extremely high den-
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Fig. 4. Scheme for construction of vectors with multiple copies of a foreign gene expression cassette (from [22]).

sities (500 ODgpo U ml™!) in the controlled environment of
the fermenter with little risk of ‘pickling’ itself. Fermenta-
tion growth is especially important for secreted proteins,
as the concentration of product in the medium is roughly
proportional to the concentration of cells in culture. An-
other positive aspect of growing P. pastoris in fermenter
cultures is that the level of transcription initiated from the
AOXI promoter can be 3-5 times greater in cells fed meth-
anol at growth-limiting rates compared to cells grown in
excess methanol. Thus, even for intracellularly expressed
proteins, product yields are significantly higher from fer-
menter cultured cells. Also, methanol metabolism utilizes
oxygen at a high rate, and expression of foreign genes is
negatively affected by oxygen limitation. Only in the con-
trolled environment of a fermenter is it feasible to monitor
and adjust oxygen levels in the culture medium.

A hallmark of the P. pastoris system is the ease with
which expression strains scale-up from shake-flask to high-
density fermenter cultures. Although some foreign pro-
teins have expressed well in shake-flask cultures, expres-
sion levels are typically low compared to fermenter cul-
tures. Considerable effort has gone into the optimization
of heterologous protein expression techniques, and de-
tailed fed-batch and continuous culture protocols are
available [23,37-39]. In general, strains are grown initially
in a defined medium containing glycerol as its carbon
source. During this time, biomass accumulates but heter-
ologous gene expression is fully repressed. Upon depletion
of glycerol, a transition phase is initiated in which addi-
tional glycerol is fed to the culture at a growth-limiting
rate. Finally, methanol or a mixture of glycerol and meth-
anol is fed to the culture to induce expression. The con-
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centration of foreign protein is monitored in the culture to
determine time of harvest.

The growth conditions for P. pastoris are ideal for large-
scale production of heterologous protein, because the me-
dium components are inexpensive and defined, consisting
of pure carbon sources (glycerol and methanol), biotin,
salts, trace elements, and water. This medium is free of
undefined ingredients that can be sources of pyrogens or
toxins and is therefore compatible with the production of
human pharmaceuticals. Also, since P. pastoris is cultured
in media with a relatively low pH and methanol, it is less
likely to become contaminated by most other microorgan-
isms.

3. Post-translational modification of secreted proteins

A major advantage of P. pastoris over bacterial expres-
sion systems is that the yeast has the potential to perform
many of the post-translational modifications typically as-
sociated with higher eukaryotes, such as processing of sig-
nal sequences (both pre and prepro type), folding, disulfide
bridge formation, certain types of lipid addition, and O-
and N-linked glycosylation.

3.1. Secretion signal selection

Foreign proteins expressed in P. pastoris can be pro-
duced either intracellularly or extracellularly. Because
this yeast secretes only low levels of endogenous proteins,
the secreted heterologous protein constitutes the vast ma-
jority of total protein in the medium (Fig. 5). Therefore,
directing a heterologous protein to the culture medium can
serve as a substantial first step in purification. However,
due to protein stability and folding requirements, the op-
tion of secretion is usually reserved for foreign proteins
that are normally secreted by their native hosts. In many
cases, researchers simply need to take advantage of the
pre-made expression cassettes available from Invitrogen.
Using selected P. pastoris vectors, researchers can clone
a foreign gene in frame with sequences encoding either
the native signal, the S. cerevisiae o-factor prepro peptide,
or the P. pastoris acid phosphatase (PHOI) signal.

Although several different secretion signal sequences,
including the native secretion signal present on heterolo-
gous proteins, have been used successfully, results have
been variable. The S. cerevisiae o-factor prepro peptide
has been used with the most success. This signal sequence
consists of a 19-amino acid signal (pre) sequence followed
by a 66-residue (pro) sequence containing three consensus
N-linked glycosylation sites and a dibasic Kex2 endopep-
tidase processing site [40]. The processing of this signal
sequence involves three steps. The first is the removal of
the pre signal by signal peptidase in the endoplasmic retic-
ulum. Second, Kex2 endopeptidase cleaves between Arg-
Lys of the pro leader sequence. This is rapidly followed by

cleavage of Glu-Ala repeats by the Stel3 protein [41]. The
efficiency of this process can be affected by the surround-
ing amino acid sequence. For instance, the cleavage effi-
ciencies of both Kex2 and Stel3 proteins can be influenced
by the close proximity of proline residues. In addition, the
tertiary structure formed by a foreign protein may protect
cleavage sites from their respective proteases.

The S. cerevisiae a-MF prepro signal sequence is the
classical and most widely used secretion signal (see Table
3, expressed proteins). In some cases, it is a better secre-
tion signal for expression in P. pastoris than the leader
sequence of the native heterologous protein. In a study
concerning the expression of the industrial lipase Lipl
from Candida rugosa, the effect of heterologous leader
sequences on expression and secretion was investigated
[42]. Tt was found that the native Liplp leader sequence
allowed for secretion but somehow hampered expression.
Either the o-factor pre or prepro signal was adequate for
both secretion and expression, but the highest level of
lipase secretion was from a clone with the full prepro
sequence. This clone produced two species of secreted pro-
tein. A small percentage was correctly processed to the
mature protein. However, a majority of the product con-
tained four additional N-terminal amino acids. Variability
in the amino terminus is commonly seen with heterologous
proteins secreted by P. pastoris using the o-factor prepro
leader.

In some cases, the standard o-MF or PHOI secretion
signals have not worked, so synthetic leaders have been
created. Martinez-Ruiz et al. [43] made mutations in the
native leader to reconstruct a more efficient Kex2p recog-
nition motif (Lys-Arg). This aided in secretion of the ri-
bosome-inactivation protein o-sarcin from the mold As-
pergillus giganteus. Another more drastic solution was to
create an entirely synthetic prepro leader. For the expres-
sion of human insulin, a synthetic leader and spacer se-
quence was found to improve secretion and protein yield
[44].

M 0 12 24 48 72

Fig. 5. Secreted expression of human serum albumin. 7.5% SDS-PAGE
of 25-ul sample of culture supernatant from a P. pastoris strain (GS-
HSA #4141) expressing human serum albumin. Cells were induced in
BMMY (buffered methanol-complex medium) for 0, 12, 24, 48, and
72 h. Lane M contains molecular mass markers (kDa).
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Recently, yet another signal peptide — PHA-E from the
plant lectin Phaseolus vulgaris agglutinin — was found to
be effective for the secreted expression of two plant lectins
and green fluorescent protein. Additionally, it was found
that proteins fused to the PHA-E signal peptide were cor-
rectly processed at the amino-termini, whereas the same
proteins secreted under the control of the S. cerevisiae o-
MF signal had heterogeneous amino-terminal extensions
[45]. Tt remains to be seen whether the PHA-E signal se-
quence works as well in the secretion and processing of
other foreign proteins.

3.2. O-Linked glycosylation

P. pastoris is capable of adding both O- and N-linked
carbohydrate moieties to secreted proteins [46]. Eukaryotic
cells assemble O-linked saccharide onto the hydroxyl
groups of serine and threonine. In mammals, O-linked
oligosaccharides are composed of a variety of sugars, in-
cluding N-acetylgalactosamine, galactose (Gal), and sialic
acid (NeuAc). In contrast, lower eukaryotes such as
P. pastoris add O-oligosaccharides composed solely of
mannose (Man) residues. No consensus primary amino
acid sequence for O-glycosylation appears to exist. Addi-
tionally, different hosts may add O-linked sugars on differ-
ent residues in the same protein. Consequently, it should
not be assumed that P. pastoris will not glycosylate a
heterologous protein even if that protein is not glycosy-
lated by its native host. For instance, although insulin-like
growth factor I (IGF-I) is not glycosylated in humans,
P. pastoris was found to add O-linked mannose to 15%
of expressed IGF-I product [23]. It should also not be
assumed that the specific Ser and Thr residues selected
for O-glycosylation by P. pastoris will be the same as
the original host.

Although there is little information concerning the
mechanism and specificity of O-glycosylation in P. past-
oris, the presence of O-glycosylation has been reported
in some heterologous proteins, such as the Aspergillus
awamori glucoamylase catalytic domain [47], human
IGF-1 [23], barley a-amylases 1 and 2 [48], and hu-
man single-chain urokinase-type plasminogen activator
[49].

Duman et al. [50] used a variety of chromatographic
procedures [phenol/sulfuric acid colorimetric assay, Dio-
nex high-pH anion-exchange chromatography (HPAEC)]
and exoglycosidases (jack bean o-mannosidase, Asper-
gillus saitoi o-1,2-mannosidase, Xanthomonas manihotis
o-1,2/1,3-mannosidase) to study endogenous cellular pro-
teins and recombinant human plasminogen produced in
P. pastoris. The study revealed the presence of O-linked
o-1,2-mannans containing dimeric, trimeric, tetrameric,
and pentameric oligosaccharides. No o-1,3 linkages were
detected. Also, the majority of oligosaccharides was
equally distributed between «-1,2-linked dimers and
trimers [50].

3.3. N-Linked glycosylation

In all eukaryotes, N-glycosylation begins in the endo-
plasmic reticulum with the transfer of a lipid-linked
oligosaccharide unit, GlcsManygGIlcNAc, (Glc = glucose;
GIcNAc = N-acetylglucosamine), to asparagine at the rec-
ognition sequence Asn-X-Ser/Thr. This oligosaccharide
core is then trimmed to MangGIcNAc,. At this point,
glycosylation patterns of lower (such as P. pastoris and
other fungi) and higher eukaryotes begin to differ. The
mammalian Golgi apparatus performs a series of trimming
and addition reactions that generate oligosaccharides com-
posed of Mans_¢GIcNAc, (high-mannose type), a mixture
of several different sugars (complex type), or a combina-
tion of both (hybrid type) [46]. In S. cerevisiae, N-linked
core units are elongated in the Golgi through the addition
of mannose outer chains. Since these outer chains vary in
length, endogenous and heterologous secreted proteins
from S. cerevisiae are heterogeneous in size. These chains
are typically 50-150 mannose residues in length, a condi-
tion referred to as hyperglycosylation.

Some foreign proteins secreted in P. pastoris appear to
be hyperglycosylated similar to those observed in S. cere-
visiae. N-Linked high-mannose oligosaccharides added to
proteins by yeast secretory systems represent a significant
problem in the use of foreign-secreted proteins by the
pharmaceutical industry. They can be exceedingly antigen-
ic when introduced intravenously into mammals and are
rapidly cleared from the blood by the liver. An additional
problem caused by the differences between yeast and
mammalian N-linked glycosylation patterns is that the
long outer chains can potentially interfere with the folding
or function of a foreign protein.

Relative to the oligosaccharide structures on S. cerevi-
siae-secreted proteins, at least three differences are appa-
rent in P. pastoris-produced proteins. First, and perhaps
most importantly, is the frequent absence of hyperglyco-
sylation. Using oligosaccharide profiling techniques, it has
been shown that the typical outer chain on P. pastoris-
secreted proteins is MangGIcNAc, or ManyGlcNAc,
[51]. Another difference is the presence of a-1,6-linked
mannose on core-related structures reported in P. past-
oris-secreted invertase [52], and the kringle-2 domain of
tissue-type plasminogen activator [53] and other proteins
[54]. Finally, P. pastoris oligosaccharides appear not to
have any terminal o-1,3-linked mannosylation [51,55].
These linkages make many yeast-produced recombinant
proteins unsuitable for human pharmaceutical uses [56].

4. Conclusions

The P. pastoris expression system has gained acceptance
as an important host organism for the production of for-
eign proteins as illustrated by the fact that a number of
proteins synthesized in P. pastoris are being tested for use
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Table 3

Heterologous proteins expressed in P. pastoris

Protein Comments: mode, amount, signal sequence Reference
Bacteria

Bacillus licheniformis a-amylase S, 2.5 g7l SUC2 [51,60]
Bacillus stearothermophilus p-alanine carboxypeptidase S, 100 mg 17!, native [61]
Bordetella pertussis pertussis pertactin (P69) 3gl! [62]
Clostridium botulinum neurotoxin (BoNT) serotype A and B I, 78 mg 1! [63]
Clostridium botulinum neurotoxin heavy chain fragment, serotype B I, 390 pug g ! [64]
Clostridium botulinum neurotoxin serotype A binding domain I, 2.4 mg total [65]
Clostridium tetani tetanus toxin fragment C I 12gl! [66]
Escherichia coli acid phosphatase/phytase (appA2) S, 289 U mg™! [67]
Escherichia coli B-galactosidase I, 20x10° U mg™! [7
Escherichia coli B-lactamase 1 [20]
Leishmania major cathepsin B-like protease S, a-MF [68]
Staphylococcus aureus staphylokinase S, 50 mg 1!, a-MF [69]
Streptococcus equisimilis streptokinase I, 77 mg 17! [70]
Streptomyces subtilisin inhibitor S [71]
Streptomyces viridosporus TTA peroxidase, endoglucanase S, 2.47 g 17! total protein, a-MF [72]
Toxoplasma gondii SAG1 antigen S, 12 mg 17!, 0-MF [73]
Vibrio cholerae accessory cholera enterotoxin (Acc) S, 7mg 17!, a-MF [74]
Fungi

Alternaria Alt 1 allergen S, a-MF [75]
Aspergillus awamori glucoamylase S, 400 mg 17!, native [76]
Aspergillus awamori glucoamylase catalytic domain S, 400 mg 17!, PHOI [47]
Aspergillus fumigatus catalase L S, 23 g 17!, PHO1 [77]
Aspergillus fumigatus dipeptidyl peptidase IV (DPP 1V) S, PHOI1 [78]
Aspergillus fumigatus dipeptidyl peptidase V (DPP V) S, 0.15 mg 1!, PHO1 [79]
Aspergillus giganteus o-sarcin ribotoxin S, 1 mg 17!, synthetic native, PHOI [43]
Aspergillus niger phytase (phyA) S, 65 U ml™!, a-MF [80]
Candida guilliermondii xylose reductase gene (xylI) LI, 0.65 U mg™!; S, 0.18 U mg™!, o-MF [81]
Candida rugosa lipase 1 (CRL) S, 150 U ml™!, a-MF [42]
Fusarium solani pectate lyase (pelC) S, 1 mg 17!, PHOI [82]
Fusarium solani pectate lyase (pelD) S, native [83]
Geotrichum candidum lipase isoenzymes S, 60 mg 1!, o-MF [84]
Phytophthora cryptogea B-cryptogein S, 45 mg 17!, PHO1 [85]
Rhizopus oryzae lipase S, 60 mg 1!, a-MF [86]
Saccharomyces cerevisiae invertase S, 2.5 g I, native [30]
Saccharomyces cerevisiae Ktrlp S, 400 mg 17!, PHOI [87]
Saccharomyces cerevisiae (0-1,2-mannosyltransferase) S, 40 mg 1”1, PHO1 [87]
Schizophyllum commune vitamin B2-aldehyde-forming enzyme S, 120 mg 17!, o-MF [88]
Trametes versicolor (white rot fungus) laccase (lecl) S, native and a-MF [89]
Trichoderma harzianum B-(1-6)-glucanase S,9.3mgl! [90]
Protists

Chondrus crispus red alga hexose oxidase 1 [91]
Gracilariopsis lemaneiformis red alga o-1,4-glucan lyase (GLql) I [92]
Plasmodium falciparum merozoite surface protein 1 (MSP-1) S, 24 mg 17!, 0-MF 93]
Plasmodium vivax apical membrane antigen I (AMA-1) S, 50 mg 1!, PHO1 [94]
Reticulomyxa filosa (giant freshwater ameba) a2, B2 tubulin isoforms I, 400 pug g! [95]
Trypanosoma cruzi acid o-mannosidase S, 11.5 pug 17!, native [96]
Plants

Allium sativum (garlic) alliin lyase I, 2167 U g7! [97]
Arabidopsis thaliana NADH :nitrate reductase I 18 pg g™! [98,99]
Barley (Hordeum vulgare) sucrose fructan 6-fructosyl transferase S, a-MF [100]
Barley o-amylase 1 S, 50 mg 17!, native [48]
Barley o-amylase 2 S, 1 mg 17!, native [48]
Barley aleurone tissue o-glucosidase S, a-MF [101]
Coffee bean o-galactosidase S, 400 mg 17!, o-MF [102]
Cynara cardunculus (cardoon) cyprosin S, 1 mg 17!, native [103]
Cynodon dactylon (Bermuda grass) Cyn d 1 S, 1.5 g 1”1, PHOI [104,105]
Galanthus nivalis agglutinin S, PHA-E [45]
Hevea brasiliensis hydroxynitrile lyase I,22gl! [106]
Hevea brasiliensis Hev b 7 patatin-like allergen S, 10 mg 17!, 0-MF [107,108]
Maize cytokinin oxidase S, native [109]
Oat phytochrome A, phA I, 30 ug g~! [110,111]
Oat phytochrome A, phyA65 apoprotein I, 20 ug g [112]
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Protein Comments: mode, amount, signal sequence Reference
Olea europaea (olive tree) aeroallergen Ole e 1 S, 60 mg 17!, 0-MF [113]
Pepper endo-B-1,4-glucanase cCell S, a-MF [114]
Pepper endo-B-1,4-glucanase cCel2 S, native [114]
Persea americana (avocado) prs a 1 major allergen S, 50 mg 17!, 0-MF [115]
Phaseolus vulgaris agglutinin (phytohemagglutinin) S, native [45]
Potato phytochrome B L25ug g’ [116]
Ragweed allergen Amb a 6 S, 1 mg 17!, a-MF [117]
Soybean root nodule acid phosphatase S, 10 mg I”!, a-MF [118]
Spinach glycolate oxidase 1,250 U g [119,120]
Spinach phosphoribulokinase I,0.5mg g! [121]
Timothy grass group I allergen S, o-MF [122]
Tomato Lycopersicon esculentum Mill. LeMir (L. esculentum miraculin) S, PHOI1 [123]
Wheat lipid transfer protein S, 720 mg 17!, PHOI [124]
Invertebrates
Achacina fulica Ferussac (giant African snail) achacin S, 0.2 mg 17!, native [125]
Aplysia californica (marine invertebrate) ADP ribosyl cyclase S, 300 mg 17!, a-MF [126]
Aequorea victoria (jellyfish) green fluorescent protein 1, S, PHA-E [45,127]
Boophilus microplus (cattle tick) Bm86 I, $* 1.5 g 17!, SUC2 [128-131]
Cockroach allergen, Bla g 4 S, 50 mg 17! [132]
Drosophila melanogaster angiotensin I-converting enzyme S, 160 mg 17!, a-MF [133]
Firefly luciferase I (peroxisome) [134]
GAVAC® vaccine against cattle tick S,20¢gl! [135]
Haementeria ghilanii (South American leech) ghilanten S, 10 mg 1!, 0-MF [136]
Hirudo medicinalis (leech) hirudin S, 1.5 g 17!, a-MF [137]
Honey bee odorant-binding protein (ASP2) S, 150 mg 17!, native [138]
Nippostrongylus brasiliensis (parasitic nematode) non-neuronal secreted S, 27 mg 1!, a-MF [139]
acetylcholine sterase
Spider dragline silk protein I, 663 mg 17! [140]
Tick anticoagulant peptide S, 1.7g1! [141]
Vertebrates (non-human)
Bovine enterokinase catalytic domain S, 6.3 mg 17!, o-MF [142]
Bovine follicle-stimulating hormone B-subunit S, 4 ug ml™!, a-MF [143]
Bovine IFN-omega 1 S, 4 mg 17!, SUC2 [144]
Bovine lysozyme c2 S, 550 mg 17!, native [145]
Bovine opsin S*, 0.3 mg I”!, PHO1 [146]
Bovine pancreatic trypsin inhibitor (aprotinin) S, 930 mg 17!, a-MF [147]
Bovine B-casein L1gl! [148]
Bovine B-lactoglobulin S, >1¢gl!, a-MF [149-151]
Bovine tissue-type plasminogen activator (tPA) S, 1.1 mg 17!, o-MF [152]
Brushtail possum TNFa S, a-MF [153]
Bungarus fasciatus (snake) venom gland acetylcholinesterase S, 2 mg 17!, native [154]
Chicken liver a-N-acetylgalactosaminidase S, 11.6 mg 1!, a-MF, PHO1 [155]
Electrophorus electricus acetylcholinesterase AChE type T S, native [156]
Hen lysozyme S, 20 mg 1!, a-MF [157]
Mammalian lipocalin allergen Bos d2 S, mg amounts, native [158]
Mouse SHTSA 5-tryptamine receptor S*, 40 pmol mg~!, o-MF [159]
Mouse epidermal growth factor S, 450 mg 17!, a-MF [35]
Mouse gelatinase B S, 10 mg I”!, o-MF [160]
Mouse lysosomal acid o-mannosidase S, native [161]
Mouse major urinary protein complex (MUP) S, 270 mg 17!, native [162]
Mouse Mdr3 P-glycoprotein I (membrane-bound), 6 pug mg~! [163-165]
Mouse single-chain Fv fragments (sFv) S, 250 mg 17!, a-MF, PHOI [166]
Murine endostatin S, 200 mg 17!, a-MF [34]
Murine Golgi mannosidase TA S, PHOI1 [167]
Murine macrophage inflammatory protein-2 (MIP-2) S, 40 mg 1!, o-MF [168]
Ovine follicle-stimulating hormone (oFSH) S, 22 mg 1!, 0-MF [169]
Porcine follicle-stimulating hormone S, 10 mg 17!, PHO1 [170]
Porcine inhibitor of carbonic anhydrase (transferrin family) S, 5mg 17!, a-MF [171]
Porcine leukocyte 12-lipoxygenase I [172]
Rabbit intestinal peptide transporter (PEPT1) 1 [173]
Rabbit intestinal peptide transporter (PEPT2) 1 [174]
Rabbit monoclonal single-chain Fv specific for recombinant human leukemia S, 100 mg 17!, a-MF [175]

inhibitory factor
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Rabbit plasma cholesteryl ester transfer protein S, PHOI1 [176]
Rabbit testicular angiotensin-converting enzyme S, PHOI, native [177]
Rat acetylcholinesterase S, 1 mg 17!, native [154]
Rat brain acetylcholinesterase T subunit S, 100 U I”! a-MF [178]
Rat complement regulator, crry S, a-MF [179]
Rat Golgi sialoglycoprotein MG160 S, 10 mg 17!, 0-MF [180]
Rat high-mobility group 1 (HMG 1) S, 50 mg 17!, 0-MF [181]
Rat liver mitochondrial carnitine palmitoyl transferases I and II (CPTI and II) I (mitochondria) [182,183]
Rat NO synthase reductase domain I, 25 mg 1! [184]
Rat peroxisomal multifunctional enzyme (perMFE-II) 1 [185]
Rat procathepsin B S, 100 mg 17!, a-MF [186,187]
Sea raven type II antifreeze protein (SRAFP) S, 30 mg 17!, 0-MF [188,189]
Shark 17o-hydroxylase/C17,20-lyase 1 [190]
Syrian golden hamster prion protein PrP¢ I, <0.1 mgl1! [191]
Humans
o(1,3/4)-Fucosyltransferase S, 30 mg I”!, a-MF [128]
o-1,2-Mannosidase 1B w/o TM domain S, o-MF [192]
o-N-Acetylgalactosaminidase (0-NAGAL) S, 11.6 mg 17!, 0-MF [193]
ol-Antitrypsin (o1-AT) S, inulinase signal sequence [194]
B2-Adrenergic receptor S*, 25 nmol g~!, a-MF [159]
u-Opioid receptor S*, a-MF [195]
ADARI1, ADAR2, ds-RNA-specific adenosine deaminases I, 1 mgl! [196]
Alzheimer’s disease amyloid precursor protein o, B, and y-secretase products S, PHOI1 [197]
Alzheimer’s disease amyloid precursor protein, 2 domains S, 24 mg 17!, 0.1 mgl~!, o-MF [198]
Amyloid precursor-like protein 2 (APLP2) S, 40 mg 17!, 0-MF [199]
Amyloid precursor protein (APP) S, 24 mg I”!, PHOI [200,201]
Amyloid precursor proteins, rAPP695, rAPP770 S, 4.5+1 mg 17!, native [202]
Bile salt-stimulated lipase S, 300 mg 17!, native, INV [203]
Bivalent diabody against carcinoembryonic antigen (CEA), T-cell coreceptor S, 1 mg 17!, a-MF [204]

CD2
c-Kit receptor kinase domain 1,02 mg 1! [205,206]
Carcinoembryonic antigen S, 20 mg I”!, a-MF [207]
Caspase-3 L 1ugg! [208]
Cathepsin K S, 38 mg I”!, a-MF [209,210]
Cathepsin L propeptide S, 10 mg I”!, a-MF [211,212]
Cathepsin V S, a-MF [213]
CD38 S, 455 mg 1!, o-MF [214]
CD40 ligand soluble form S, 255 mg 17! [215]
Chimeric B7-2 antibody fusion protein S, 15 mg 17!, 0-MF [216]
Chorionic gonadotropin o subunit, B subunit, and of§ heterodimer S, 24 mg 17! (o), 3 mg 17! (B), [217]

16 mg 17! (o), a-MF

Cromer blood group antigen decay-accelerating factor S, a-MF [218]
Cytomegalovirus ppUL44 antigen I, 0.1 mg ml~! [219]
Decay-accelerating factor DAF (CDS55)-Echovirus-7 receptor S, 6 mg 17!, a-MF [220]
Double-stranded RNA-specific editase I (hREDI) I, 1 mg 1! [221]
Endostatin S, 20 mg 17!, 0-MF [34,222]
Fas ligand S, 100 mg 17!, a-MF [223]
Fibrinogen, 143411, 143-427 S, 100 mg 17!, 75 mg 1!, a-MF [224]
Fibroblast collagenase (proMMP-1) S, 23 mg 17!, a-MF [225]
Fibrinogen-420 oEC domain S, o-MF [226]
Gastric cathepsin E S, 0.6 mg 17!, native [227]
Heart muscle carnitine palmitoyltransferase I (M-CPTI) I (mitochondria) [228]
Insulin S, synthetic signal [44]
Insulin-like growth factor-1 (IGF-1) S, 600 mg 17!, o-MF 23]
Interferon-y receptor cytoplasmic domain I [229]
Interleukin-17 (hIL-17) S, 035 mg I"!, a-MF [230]
Intracellular proteinase inhibitor (PI-6) I, 50 mg 1! [231]
Kunitz-type protease inhibitor domain of protease nexin-2/amyloid B-protein S, 1.0 gI"!, a-MF [232]

precursor
Leukemia inhibitory factor (LIF) S, 17 mg 17!, 0-MF [233]
Lymphocyte surface antigen CD38 S, 400 mg 17!, PHOI [234]
Lysosomal o-mannosidase S, 83 ug 17!, native [235]
Mast cell tryptase S, 6.5 mg 17!, o-MF [236,237]
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MHC class II heterodimers (soluble form/HLA-DR?2) S, 400 ug 17!, o-MF [238]
Monoclonal single-chain Fv S, 50 mg 1!, 0-MF [239]
Monocyte chemoattractant protein-1 (MCP-1) S, 100 mg 17!, native and o-MF [240]
Monocyte chemotactic protein 3 (hMCP-3) S, 1 mg 17!, PHOI [241]
Neural cell adhesion molecule (NCAM) S, 50 mg 17!, PHO1 [242]
NonO nucleic acid binding protein I (endoplasmic reticulum) [243]
Pancreatic o-amylase S, 20 mg 17!, 0-MF [244]
Pancreatic triglyceride lipase S, 75 ml I”!, PHOL1 [245]
Papain nitrile hydratase S, 5mg 17!, a-MF [246]
Placental alkaline phosphatase (PLAP) S, 2 mg 17!, PHOI [247]
Placental protein-14 (PP-14) S, o-MF [248]
Plasminogen kringles 1-4 S, 17 mg 1!, PHO1 [50]
Plasminogen kringles 1-4, angiostatin protein S, 10% total protein, PHO1 [249]
Procarboxypeptidase A2 S, 180 mg 17!, a-MF [250]
Procathepsin B S, 20 mg I”!, a-MF [251]
Procolipase S, 30 mg 1™}, native [252]
Protein kinase C interacting protein 1 (PKCI-1) I, 0.25 mg 17! [253]
Proteinase 3, Wegener’s antigen S, 670 mg 17!, a-MF [254]
Proteinase inhibitor 8 1, 15% total protein [255]
scFv (against ovarian carcinoma)-biotin mimetic peptide S [256,257]
scFv (against squamous carcinoma) S, 50 mg 17!, 0-MF [239]

Serum albumin

Serum transferrin N-lobe

Sex steroid binding protein

Single-chain urokinase-type plasminogen activator
Thrombomodulin

Tissue factor extracellular domain

Tissue kallikrein

Tissue-type plasminogen activator kringle 2 domain
Transforming growth factor B receptor extracellular domain
Tumor necrosis factor oo (TNF)

Type 1 plasminogen activator inhibitor (PAI-1)

Type I collagen (with prolyl 4-hydroxylase)
Urokinase-type plasminogen activator-annexin V chimeras
Vascular endothelial growth factor (VEGF165)

Viruses

A/VICTORIA/3/75 influenza virus neuraminidase head domain
Bovine herpes virus-1 glycoprotein D

Dengue virus type 1 structural gene recombinant E protein
Hepatitis B virus surface antigen

Hepatitis B virus surface antigen-HIV gp41 epitope chimera
Hepatitis E virus ORF3

Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120

(ENV)
Polyomavirus large T antigen
Reovirus lambda 1 core protein
Reovirus sigma 1 protein
Vaccinia virus complement control protein

S, 3 g I, native [58,258-260]

S, 240 mg 1”!, a-MF [261-263]
S, 4 mg 17!, a-MF [264]

S, 5 mg 17!, pre Mucor pusillus rennin signal [49]

S [33]

S, 10 mg I”!, PHOI [265]

S, 30 mg I”!, a-MF [266,267]
S, 170 mg 17!, o-MF [9,26,53,268-270]
S, 10 mg I"!, o-MF [271]
L10gl! [272,273]
S, 3 mg I”!, a-MF [274]

I, 15 mg 17! [28]

S, 600 TU ml~!, pre Mucor pusillus rennin signal [275]

S, 40 mg 17!, PHO1 [276]

S, 3 mg ml~!, a-MF [277,278]
S, 20 mg 1!, o-MF [279,280]
S, PHOI1, prM virus signal sequence [281]

I, 400 mg 17! [31,282]
I [283]

1 [284]

S, 20 mg I”!, o-MF [285]

I, 0.5 mg 17! [286]

I, 0.8 mg 1! [287]

1 [288]

S, 3mg 17!, a-MF [289]

I=intracellular (with subcellular location), S =secreted, S* =secreted to plasma membrane. Amounts are highest reported for particular protein. Signal
sequences: o-MF (S. cerevisiae o-mating factor); PHOL (P. pastoris acid phosphatase); SUC2 (S. cerevisiae invertase).

as human pharmaceuticals in clinical trials. IGF-1 in a
treatment for amyotrophic lateral sclerosis [57] and human
serum albumin (HSA) in a serum replacement product [58]
have passed through clinical trials and are awaiting final
approval. The angiogenesis inhibitors endostatin and an-
giostatin are in or rapidly approaching clinical trials [59].
Another protein, hepatitis B surface antigen, is currently
on the market as a subunit vaccine against the hepatitis B
virus in South America. A complete list of heterologous

proteins expressed successfully in P. pastoris is shown in
Table 3.

Yet, despite the success of the P. pastoris system, oppor-
tunities exist to develop a larger range of proteins that can
be expressed in the system. The new alternative promoters
and marker/host strain combinations make possible the
expression of heterooligomeric proteins and essential co-
factors. Still little is known about AOXI promoter regu-
lation at the molecular level. Such studies could lead to
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modified 40X promoters with increased transcriptional
strength or to the identification and overexpression of fac-
tors that limit transcription of P4ox;.

Studies are also needed to address problems associated
with the secretion of mammalian proteins from P. pastoris.
A better understanding of secretion signals, glycosylation,
and endogenous P. pastoris proteases would be extremely
helpful in developing and improving the P. pastoris heter-
ologous expression system.
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